半导体原材料行业深度剖析:国产半导体材料的新机遇
新浪财经-自媒体综合
来源:未来智库
获取报告请登录未来智库。
半导体原材料产业链海内外发展状况
半导体材料位于半导体产业链的最上游
半导体行业具有技术难度高、投资规模大、产业链环节长、产品种类多、更新迭代快、下游应用广泛的特点,产业链呈垂直化分工格局。半导体制造产业链包含设计、制造和封装测试环节,半导体材料和设备属于芯片制造、封测的支撑性行业,位于产业链最上游。
半导体产品的加工过程主要包括晶圆制造(前道)和封装(后道)测试,随着先进封装技术的渗透,出现介于晶圆制造和封装之间的加工环节,称为中道。由于半导体产品的加工工序多,所以在制造过程中需要大量的半导体设备和材料。我们主要以最为复杂的晶圆制造(前道)工艺为例,说明制造过程的所需要的材料。
晶圆生产线可以分成7个独立的生产区域:扩散、光刻、刻蚀、离子注入、薄膜生长、抛光(CMP)、金属化。每个独立生产区域中所用到的半导体材料都不尽相同。
细分种类众多,单品类集中度高
2009年,制造材料市场规模与封测材料市场规模相当,从此至今,制造材料市场规模增速一直高于封测材料市场增速。经过近十年发展,制造材料市场规模已达封测材料市场规模的1.62倍。
半导体制造材料主要包括硅片、电子气体、光掩膜、光刻胶配套化学品、抛光材料、光刻胶、湿法化学品与溅射靶材等。根据SEMI预测,2019年硅片、电子气体、光掩膜、光刻胶配套化学品的销售额分别为亿美元、43.7亿美元、41.5亿美元、22.8亿美元,分别占全球半导体制造材料行业%、%、%、6.87%的市场份额。其中,半导体硅片占比最高,为半导体制造的核心材料。
转向区域市场方面,根据SEMI统计数据,台湾凭借其庞大的代工厂和先进的封装基地,以114亿美元连续第九年成为半导体材料的最大消费地区。韩国位列第二,中国大陆位列第三。韩国,欧洲,中国台湾和中国大陆的材料市场销售额增长较为强劲,而北美,世界其他地区和日本市场则实现了个位数的增长。(其他地区被定义为新加坡,马来西亚,菲律宾,东南亚其他地区和较小的全球市场。)
半导体材料市场处于寡头垄断局面,国内产业规模非常小。相比同为产业链上游的半导体设备市场,半导体材料市场更细分,单一产品的市场空间很小,所以少有纯粹的半导体材料公司。半导体材料往往只是某些大型材料厂商的一小块业务,例如陶氏化学公司(),杜邦,三菱化学,住友化学等公司,半导体材料业务只是其电子材料事业部下面的一个分支。尽管如此,由于半导体工艺对材料的严格要求,就单一半导体化学品而言,仅有少数几家供应商可以提供产品。以半导体硅片市场为例,全球半导体硅片市场集中度较高,产品主要集中在日本、韩国、德国和中国台湾等发达国家和地区,中国大陆厂商的生产规模普遍偏小。
2018年前五大硅片供应商日本信越化学株式会社、株式会社、德国、台湾环球晶圆股份有限公司和韩国SKSiltronInc.分别占据全球市场份额的29%、25%、15%、14%和10%,产值合计占据超过93%的市场份额。在中国大陆,仅有上海硅产业集团、中环股份、金瑞泓等少数几家企业具备8英寸半导体硅片的生产能力,而12英寸半导体硅片主要依靠进口,自主率非常低。除硅片市场具有寡头垄断特征外,其他原材料市场亦是如此,我们将于后文进一步阐述。
综合来看,我国半导体材料产业链正历经从无到有、从弱到强的重大变革,也必将为引发历史性的投资机遇,下文我们将对硅片、电子特种气体、掩膜版、抛光材料、光刻胶、湿法化学品等做逐一分析。
硅片:市场规模最大的半导体原材料
衬底是具有特定晶面和适当电学,光学和机械特性的用于生长外延层的洁净单晶薄片,按照演进过程可分为三代:以硅、锗等元素半导体材料为代表的第一代,奠定微电子产业基础;以砷化镓(GaAs)和磷化铟(InP)等化合物材料为代表的第二代,奠定信息产业基础;以及以氮化镓(GaN)和碳化硅(SiC)等宽禁带半导体材料为代表的第三代,支撑战略性新兴产业的发展。
硅在地壳中占比约27%,是除了氧元素之外第二丰富的元素,硅元素以二氧化硅和硅酸盐的形式大量存在于沙子、岩石、矿物中,储量丰富并且易于取得。通常将95-99%纯度的硅称为工业硅。沙子、矿石中的二氧化硅经过纯化,可制成纯度98%以上的硅;高纯度硅经过进一步提纯变为纯度达99.9999999%至99.****%(9-11个9)的超纯多晶硅;超纯多晶硅在石英坩埚中熔化,并掺入硼(P)、磷(B)等元素改变其导电能力,放入籽晶确定晶向,经过单晶生长,制成具有特定电性功能的单晶硅锭。
熔体的温度、提拉速度和籽晶/石英坩埚的旋转速度决定了单晶硅锭的尺寸和晶体质量,而熔体中的硼(P)、磷(B)等杂质元素的浓度决定了单晶硅锭的电特性。单晶硅锭经过切片、研磨、蚀刻、抛光、外延、键合、清洗等工艺步骤,制造成为半导体硅片。在半导体硅片上可布设晶体管及多层互联线,使之成为具有特定功能的集成电路或半导体器件产品。在生产环节中,半导体硅片需要尽可能地减少晶体缺陷,保持极高的平整度与表面洁净度,以保证集成电路或半导体器件的可靠性。
硅基半导体材料是目前产量最大、应用最广的半导体材料。根据SEMI统计数据,从半导体器件产值来看,2017年全球95%以上的半导体器件和99%以上的集成电路采用硅作为衬底材料,而化合物半导体市场占比在5%以内。从衬底市场规模看,2017年硅衬底年销售额87亿美元,GaAs衬底年销售额约8亿美元,GaN衬底年销售额约1亿美元,SiC衬底年销售额约3亿美元。硅衬底销售额占比达85%以上,其主导和核心地位仍不会动摇。
半导体产业链的最上游是硅片制造厂,硅片是生产半导体所用的载体,是半导体最重要的上游原材料。
半导体硅片分类及制造工艺介绍(略,详见报告原文)
……
硅片市场空间巨大,12英寸硅片市占率快速提升
2017年以来,受益于半导体终端市场需求强劲,下游传统应用领域计算机、移动通信、固态硬盘、工业电子市场持续增长,新兴应用领域如人工智能、区块链、物联网、汽车电子的快速发展,半导体硅片市场规模不断增长,并于2018年突破百亿美元大关。根据SEMI统计数据,2016年至2018年,全球半导体硅片销售金额从72.09亿美元增长至114亿美元,CAGR达25.75%。与此同时,2016至2018年,全球半导体硅片出货面积从107.38亿平方英寸增长至127.32亿平方英寸,CAGR达8.89%。
根据SEMI统计数据,就当前市场占有率最高的8英寸硅片和12英寸硅片而言:2011年开始,8英寸硅片市场占有率稳定在25%-27%。2016年至2017年,由于汽车电子、智能手机用指纹芯片、液晶显示器市场需求快速增长,8英寸硅片出货面积随之快速增长,同比增长14.68%。2018年,受益于汽车电子、工业电子、物联网等应用领域的强劲需求,以及功率器件、传感器等生产商将部分产能从150mm转移至200mm,8英寸硅片继续保持6.25%的增长。
12英寸硅片方面,自2000年全球第一条12英寸芯片制造生产线建成以来,12英寸硅片市场需求迅速增加,出货面积不断上升。2008年,12英寸硅片出货量首次超过8英寸硅片;2009年,12英寸硅片出货面积超过其他尺寸硅片出货面积之和。2000年至2018年,由于移动通信、计算机等终端市场持续快速发展,12英寸硅片市场份额从1.69%大幅提升至2018年的63.31%,成为硅片市场最主流的产品。2016至2018年,由于人工智能、区块链、云计算等新兴终端市场的蓬勃发展,12英寸硅片继续保持强劲增长态势,年均复合增长率为7.51%。
转向国内市场,2008年至2013年,中国大陆硅片市场发展趋势与全球硅片市场一致。2014年起,随着中国各半导体制造生产线投产、制造技术的不断进步与终端产品市场的飞速发展,中国大陆半导体硅片市场步入了飞跃式发展阶段。根据SEMI统计数据,2016年至2018年,中国大陆半导体硅片销售额从5.00亿美元上升至9.96亿美元,年均复合增长率高达41.17%,远高于同期全球增速。
产能逐步释放,12英寸硅片仍供不应求
半导体器件大部分是由中游的晶圆代工厂生产,代工厂的产量及稼动率代表了对上游半导体硅片的需求量。根据SUMCO数据,未来3-5年内全球12寸硅片的供给和需求依旧存在缺口,并且缺口会随着半导体周期的景气程度回暖而越来越大,到2022年将会有100万片/月的缺口。
根据ICinsights提供的数据,前八大晶圆制造厂中有台积电、联电和力晶来自中国台湾地区,格罗方德(GlobalFoundry)来自美国,三星来自韩国,中芯国际和华虹宏力来自中国大陆,Towerjazz来自以色列。在周期景气及28nm工艺演进到7nm工艺的情况下,各大代工厂纷纷扩产,产能已经开始逐步释放。其中国内新增26条晶圆线,有4个8英寸产线,其余均为12英寸产线,产能将在2019年起逐步释放。
硅片生产线的建设周期一般为2-3年,且收回投资成本时间较长,投资回收期约为6-7年,在未来的一段时间内大硅片产能不具备快速提升的基础,在需求快速增长的同时,大尺寸硅片市场将出现供不应求的局面。根据SUMCO和SEMI的统计,2017年全球8英寸和12英寸硅片的需求分别为558万片/月和557万片/月,8英寸和12英寸硅片的出货量分别为530万片/月和550万片/月,硅片厂商在满产的状态下仍不能满足需求。保守预计到2020年8英寸和12英寸的终端市场需求量将分别超过630万片/月和620万片/月。
12英寸硅片自给率低,未来有望实现国产替换
根据电子行业协会统计,2016年中国大陆企业在4-6英寸硅片(含抛光片、外延片等)的产量约为5200万片,基本可以满足国内4-6英寸的晶圆需求。但是8英寸-12英寸的大硅片,国内自供率仍然比较低。国内具有8英寸硅片和外延片生产能力的有浙江金瑞泓、昆山中辰、北京有研新材、南京国盛、CECT46所以及上海新傲,合计月产能为23.3万片/月。2018年国内对8英寸硅片的月需求量预计为80万片,仍有较大的缺口。目前国内8英寸硅片主要适用于分立器件,但先进制程的集成电路用8英寸硅片的产业化技术尚有待改善。
12英寸硅片则一直依赖于进口,2018年国内的总需求量为50万片/月,预计到2018年后总需求量为110-130万片/月。目前国内在制作大硅片的超纯硅原料、单晶炉、切磨抛设备、检测设备等领域均依赖于进口。近年来,我国在8英寸和12英寸集成电路级硅片的研发上取得了重大突破,国家在政策和资本等各方面给予大力支持,中国本土企业在市场、政策、资金的推动下开始快速发展,未来有望逐步实现国产替代。
由此可见,国内新增fab产能对半导体大硅片的需求非常强劲。但无奈国内自给率非常低,大部分依赖海外进口,上海硅产业集团的半导体大硅片未来进口替代空间巨大。上海硅产业集团未来业绩主要驱动力为国内新增fab产能的增加及公司自身技术的提升。
主要竞争对手分析:群雄割据,集中度持续提升(略,详见报告原文)
……
电子特气:衡量半导体技术的核心产品
电子特气应用于IC制造多个环节
气体是工业经济发展的血液,覆盖社会生产的各个领域,牵动着科学技术的发展。电子气体是指用于半导体及其它电子产品生产的气体。与传统的工业气体相比,电子气体特殊在气体的纯净度要求极高,所以也称为电子特种气体。特种气体是随着电子行业的兴起而在工业气体门类下逐步细分发展起来的新兴产业,广泛应用于集成电路、显示面板、光伏能源、光纤光缆、新能源汽车、航空航天、环保、医疗等领域。中国电子气体的发展对我国半导体芯片产业的发展起着至关重要的作用,也直接关系到国民经济发展和国家战略安全。
电子气体在多个集成电路制造环节具有重要作用,尤其在半导体薄膜沉积环节发挥不可取代的作用,是形成薄膜的主要原材料之一。
电子特种气体种类多,应用领域广泛。根据SEMI统计数据,电子特种气体在半导体整个制程应用中成本占比仅为5%~6%,但是由于其品种繁多,在半导体制程工艺中覆盖广泛,因此成为衡量半导体技术的核心产品。在制备特种气体供应环节所涉及的市场依然是国内外公司积极布局的方向。
特种气体分类及生产工序
特种气体的分类方式很多种,例如按照气体本身化学成分可分为:硅系、砷系、磷系、硼系、金属氢化物、卤化物和金属烃化物七类。按照在集成电路中的作用可分为掺杂气体、外延气体、离子注入气体、发光二极管用气体、刻蚀气体、化学气相沉积(CVD)用气体、载运稀释气体七类。同时,以上分类存在交叉,例如四氯化硅(SiCl4)既属于硅系气体,又属于外延气体,同时在化学气相沉积(CVD)中也存在应用。
特种气体的主要生产工序包括气体合成、气体纯化、气体混配、气瓶处理、气体充装、气体分析检测。气体合成是将原料在特定压力、温度、催化剂等条件下,通过化学反应得到气体粗产品。气体纯化是通过精馏、吸附等方式将粗产品精制成更高纯度的产品。气体混配是将两种或两种以上有效组分气体按照特定比例混合,得到多组分均匀分布的混合气体。气瓶处理是根据载气性质及需求的不同,对气瓶内部、内壁表面及外观进行处理的过程,以保证气体存储、运输过程中产品的稳定。气体充装是指通过压力差将气体充入气瓶等压力容器;气体分析检测即为对气体的成分进行分析、检测的过程。
在上图所示工序中,特种气体提纯是制备工艺的核心技术壁垒。特种气体纯度的提高,能够有效提高电子器件生产的良率和性能。电子特气中水汽、氧等杂质组易使半导体表面生成氧化膜,影响电子器件的使用寿命,含有的颗粒杂质会造成半导体短路及线路损坏。而伴随半导体工业的不断发展,产品的生产精度越来越高。以集成电路制造为例,其电路线宽已经从最初的毫米级,到微米级甚至纳米级,对应用于半导体生产的电子特气纯度亦提出了更高的要求。
电子特气纯度提升的影响因素较多,难度较大。电子特气纯度提升的影响因素较多,主要包括三个方面:
1)气体的分离和提纯。电子特气的分离和提纯方法原理上可分为精馏分离、分子筛吸附分离以及膜分离三大类,在实际提纯分离过程中,为了达到更好的分离效率,往往会利用多种分离方法进行组合,工艺更为复杂。
2)气体杂质检测和监控。随着电子特气的纯度越来越高,对分析检测方法和仪器提出了更高的要求,检测限从最早的ppm级已经发展到ppt级。目前国外电子气体的分析己经经历了离线分析、在线分析(on-line),原位分析(insitu)等几个阶段。对于高纯度电子气体的分析,国外已开发出系统完整的分析测试方法和现场分析仪器。而由于我国电子特气行业一直重生产而轻检测,因此分析方法和分析仪器同国外厂商相比都比较落后。
3)气体的运输和储存。高纯电子特气得来不易,在储存和运输过程中要求使用高质量的气体包装储运容器、以及相应的气体输送管线、阀门和接口,确保避免二次污染。而我国加工工艺整体落后以及不符合国际规范,市场主要被国外公司占据。国内电子特气纯度仍有待提升。目前国外电子特气的纯度一般在6个“9”(即99.9999%),而国内多在4—5个“9”之间,少数能达到6个“9”。
电子特气市场空间广阔,国外垄断格局明显
外企垄断市场,特气国产化势在必行
国内特种气体于20世纪80年代随着国内电子行业的兴起而逐步发展,并且随着医疗、食品、环保等行业的发展应用领域和产品种类不断丰富,由于技术、工艺、设备等多方面差距明显,发展初期特种气体产品基本依赖进口。
根据卓创资讯数据,随着技术的逐步突破,国内气体公司在电光源气体、激光气体、消毒气等领域发展迅速,但与国外气体公司相比,大部分国内气体公司的供应产品仍较为单一,用气级别不高,尤其在集成电路、显示面板、光伏能源、光纤光缆等高端领域,2017年空气化工集团、液化空气集团、大阳日酸株式会社、普莱克斯集团、林德集团等国外气体公司的市场占比超过80新兴的赚钱行业半导体%,空气化工集团、液化空气集团、大阳日酸株式会社、普莱克斯集团、林德集团分别占比25%、23%、17%、16%、7%,国内气体公司仅占12%。
自20世纪80年代中期特种气体导入中国市场,中国的特种气体行业已经经过了30年的发展和沉淀,随着不断的经验积累和技术进步,业内领先企业已在部分产品上实现突破,达到国际通行标准,逐步实现了进口替代,特种气体国产化具备了客观条件。在需求层面,国内近年连续建设了多条8寸、12寸大规模集成电路生产线、高世代面板生产线等,为保障供货稳定、服务及时、控制成本等,特种气体国产化的需求迫切。此外,近年来国家相继发布《“十三五”国家战略新兴产业发展规划》、《新材料产业指南》等指导性文件,旨在推动包括特种气体在内的关键材料国产化。因此,在技术进步、需求拉动、政策刺激等多重因素的影响下,特种气体国产化势在必行。
化学机械抛光(CMP):平坦化主要工艺
化学机械抛光工艺简介
化学机械抛光技术(CMP)是集成电路制造中获得全局平坦化的一种手段,这种工艺是为了能够获得既平坦、又无划痕和杂质玷污的表面而专门设计的。与传统的纯机械或纯化学的抛光方法不同,CMP工艺是通过表面化学作用和机械研磨的技术来实现晶圆表面微米/纳米级不同材料的去除,从而达到晶圆表面的高度(纳米级)平坦化效应,使下一步的光刻工艺得以进行。
CMP的主要工作原理是在一定的压力及抛光液的存在下,被抛光的晶圆对抛光垫做相对运动,借助纳米磨料的机械研磨作用与各类化学试剂的化学作用之间的高度有机结合,使被抛光的晶圆表面达到高度平坦化、低表面粗糙度和低缺陷的要求。根据不同工艺制程和技术节点的要求,每一片晶圆在生产过程中都会经历几道甚至几十道的CMP抛光工艺步骤。
CMP的主要检测参数包括研磨速率、研磨均匀性和缺陷量。研磨速率是指单位时间内圆片表面材料被研磨的总量。研磨均匀性又分为圆片内研磨均匀性和圆片间研磨均匀性。圆片内研磨均匀性是指某个圆片研磨速率的标准方差与研磨速率的比值;圆片间研磨均匀性用于表示不同圆片在同一条件下研磨速率的一致性。对于CMP而言,主要的缺陷包括表面颗粒、表面刮伤、研磨剂残留等,它将直接影响产品的成品率。
CMP工艺后的器件材料损耗要小于整个器件厚度的10%。也就是说不仅要使材料被有效去除,还要能够精准地控制去除速率和最终效果。随着器件特征尺寸的不断缩小,缺陷对于工艺控制和最终良率的影响愈发的明显,降低缺陷是CMP工艺的核心技术要求。
CMP技术所采用的设备及消耗品包括:抛光机、抛光液、抛光垫、后CMP清洗设备、抛光终点测及工艺控制设备、废物处理和检测设备等。CMP设备主要分为两部分,即抛光部分和清洗部分,抛光部分由4部分组成,即3个抛光转盘和一个圆片装卸载模块。清洗部分负责圆片的清洗和甩干,实现圆片的“干进干出”。
抛光垫:CMP工艺技术核心
抛光垫是输送和容纳抛光液的关键部件,在化学机械抛光的过程中,抛光垫的作用是:1)把抛光液有效均匀地输送到抛光垫的不同区域;2)将抛光后的反应物、碎屑等顺利排出,达到去除效果;3)维持抛光垫表面的抛光液薄膜,以便化学反应充分进行;4)保持抛光过程的平稳、表面不变形,以便获得较好的晶片表面形貌;
按是否含有磨料抛光垫可分为有磨料抛光垫和无磨料抛光垫;按材质可分为聚氨酯抛光垫、无纺布抛光垫和复合型抛光垫;按表面结构可分为平面型抛光垫、网格型抛光垫和螺旋线型抛光垫。此外,抛光垫也可以分为硬质抛光垫和软质抛光垫两种。一般,硬质的抛光垫可较好地保证工件表面的平整度和较高的材料去除率,软质的抛光垫可获得加工变质层和表面粗糙度都很小的抛光表面。其中,硬质抛光垫包含有各种粗布垫、纤维织物垫、聚乙烯垫等,软质包含有各种绒毛垫、聚氨酯垫和细毛毡垫等。
由于CMP基于对抛光表面凸峰材料选择性去除的工作原理,因此较硬的抛光垫更有利于材料去除,且能获得较高的平面度,但硬度过高则容易引起表面损伤和材料去除不均匀等问题。而较软的抛光垫虽然可以获得表面粗糙度和加工变质层都很小的光滑表面,但其接触表面容易发生变形,不具备对凸峰材料的选择性去除,因此抛光效率低且平面度差。
抛光垫的物理特性与CMP的效率和质量有着密切关系:(1)抛光垫硬度很大程度上决定着其面形精度的保持能力,较硬的抛光垫有利于获得平面度较好的抛光表面,而较软抛光垫可以保证良好的表面质量和较浅的加工变质层。(2)抛光垫的弹性模量和剪切模量是影响加工性能的关键因素。高弹性模量的抛光垫承受接触载荷的能力强,抛光效率高。剪切模量决定抛光垫抵抗旋转方向向上力的能力,材料去除率与之成反比,而且温度对抛光垫剪切模量会产生影响,弹性模量和剪切模量保持能力强的抛光垫寿命长、抛光效果好。(3)抛光垫与晶圆表面的贴合程度受其压缩性能影响,抛光效率和加工表面的平面度与此有着密切关系。
为达到高的抛光效率,抛光垫应对工作表面凸起部分进行选择性去除,而且尽可能避免与表面凹陷部分发生作用。可压缩性好的抛光垫可避免与凹区表面发生接触,更好的对凸峰材料进行选择性去除,因而抛光效率高。不过抛光垫的可压缩性太大则不利于抛光表面材料的均匀去除,因而可压缩性应控制在适当范围。
抛光液:CMP技术中成本最高的部分
抛光液是一种不含任何硫、磷、氯添加剂的水溶性抛光剂,具有良好的去油污,防锈,清洗和增光性能,并能使金属制品超过原有的光泽。产品性能稳定、无毒,对环境无污染。抛光液的主要产品可以按主要成分的不同分为以下几大类:金刚石抛光液(多晶金刚石抛光液、单晶金刚石抛光液和纳米金刚石抛光液)、氧化硅抛光液(即CMP抛光液)、氧化铈抛光液、氧化铝抛光液和碳化硅抛光液等几类。
氧化硅抛光液(CMP抛光液)是以高纯硅粉为原料,经特殊工艺生产的一种高纯度低金属离子型抛光产品。广泛用于多种材料纳米级的高平坦化抛光,如:硅晶圆片、锗片、化合物半导体材料砷化镓、磷化铟,精密光学器件、蓝宝石片等的抛光加工。CMP抛光液的主要作用是为抛光对象提供研磨及腐蚀溶解。
在化学机械抛光过程中,抛光液与晶片之间发生化学反应,在晶片表面形成一层钝化膜,然后由抛光液中的磨料利用机械力将反应产物去除,所以抛光液对抛光效率和加工质量有着重要影响。
CMP抛光液的主要成分一般包括:去离子水、磨料、pH值调节剂、氧化剂、抑制剂和表面活性剂等。
此外,抛光液的流速对抛光效果也有很大的影响。当抛光液的流速过小时,晶片、磨料及抛光垫三者之间的摩擦力增大,温度升高,导致加工表面粗糙度加大,表面平整度降低;当流速较大时,能够使反应产物及时脱离加工表面,还可以降低加工区域的温度,使得加工表面温度相对一致,从而获得较好的表面质量。但抛光液流速过大时,又会破坏加工表面平整度,降低抛光效率。目前很多公司广泛运用的一种方法是抛光开始阶段采用较小的流速,随着加工区域温度的升高