数学这一学科就是需要我们进行练习的,不然是会容易不知道怎么运用所学的知识。而且想要学好的话,就是要依赖多练习的,所以下面我们就给大家分享初中的数学试卷,有需要的可以参考一下的内容。
初中数学试卷1
一、选择题 (每题3分,共15分)
下列实数中,是无理数的是 ( )
A. π B. 2/3 C. √4 D. -5
下列各式中,是一元一次方程的是 ( )
A. x^2 + 2x = 0 B. 3x + 5 C. x^2 – 3x + 2 = 0 D. 2x – 5 = 3x + 1
下列计算正确的是 ( )
A. 5a – a = 4 B. a^3 · a^2 = a^6 C. a^6 ÷ a^2 = a^3 D. (a + b)^2 = a^2 + b^2
二、填空题 (每题3分,共18分)
若 |x| = 5,则 x = _______。
若 (a + 3)/2 = (2a – 1)/3,则 a = _______。
若 (x – 2)^2 + √(y + 3) = 0,则 x – y = _______。
若方程组 { x + y = 4; x – y = 2 } 的解是 { x = a; y = b },则 a – b = _______。
下列各式中,与 ab 是同类项的是 ( )
A. ac B. bc C. abc D. a + b
下列运算正确的是 ( )
A. 5a + 3b = 8ab B. a^5 · a^3 = a^(5+3) C. (x-1)^2 = x^2 – 1 D. (x+y)^2 = x^2 + y^2
三、解答题 (每题7分,共49分)
解方程:3x – 7(x – 1) = 3 – (x + 3)。
求直线 y = 2x – 1 与 y = -x + 4 的交点坐标。
解不等式组:{ x – 3 > -1; x > 0; x < 4 } 并求其解集。
若多项式 (x^2 – x – 1)^2 – ax^2 + bx + c 能被 (x + 1)^2整除,求 a, b, c 的值。
若关于 x 的方程 ax^2 + bx + c = 0 (a ≠ 0) 有两个相等的实数根,求证:a/b – b/a = 1。
四、应用题 (每题10分,共20分)
一个长方形的周长是20厘米,长是a厘米,求宽是多少厘米。
甲、乙两地相距360千米,一辆汽车从甲地开往乙地,去时的速度是每小时60千米,共用了6小时。返回时只用了4小时,这辆汽车返回时的速度是多少?
五、附加题 (每题10分,共20分)
已知关于 x 的方程 x^2 – 2x – k = 0 有两个不相等的实数根。
(1) 求 k 的取值范围;
(2) 若方程的两个实数根分别为 x₁ 和 x₂,且 1/x₁ + 1/x₂ = -1/2,求 k 的值。
已知关于 x 的不等式组 { x > a; x > 3; x < b } 的解集为 x > 3,求 a 和 b 的取值范围。
初中数学试卷2
一、选择题(本题共24分,每小题3分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.下列各组数中,以它们为边长的线段能构成直角三角形的是().
A.,,B.3,4,5C.2,3,4D.1,1,
2.下列图案中,是中心对称图形的是().
3.将一元二次方程x2-6x-5=0化成(x-3)2=b的形式,则b等于().
A.4B.-4C.14D.-14
4.一次函数的图象不经过().
A.第一象限B.第二象限C.第三象限D.第四象限
5.已知四边形ABCD是平行四边形,下列结论中不正确的是().
A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形
C.当∠ABC=90º时,它是矩形D.当AC=BD时,它是正方形
6.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,
∠AOD=120º,则BC的长为().
A.B.4C.D.2
7.中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:
跳高成绩(m)1.501.551.601.651.701.75
人数132351
这些运动员跳高成绩的中位数和众数分别是().
A.1.65,1.70B.1.70,1.65C.1.70,1.70D.3,5
8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为,点B的坐标为,点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是().
A.3B.4
C.5D.6
二、填空题(本题共25分,第9~15题每小题3分,第16题4分)
9.一元二次方程的根是.
10.如果直线向上平移3个单位后得到直线AB,那么直线AB的解析式是_________.
11.如果菱形的两条对角线长分别为6和8,那么该菱形的面积为_________.
12.如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,
AC的中点,已知DF=3,则AE=.
13.若点和点都在一次函数的图象上,
则y1y2(选择“>”、“<”、“=”填空).
14.在平面直角坐标系xOy中,点A的坐标为(3,2),若将线段OA绕点O顺时针旋转90°得到线段,则点的坐标是.
15.如图,直线:与直线:相交于点P(,2),
则关于的不等式≥的解集为.
16.如图1,五边形ABCDE中,∠A=90°,AB∥DE,AE∥BC,点F,G分别是BC,AE的中点.动点P以每秒2cm的速度在五边形ABCDE的边上运动,运动路径为F→C→D→E→G,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2所示.若AB=10cm,则(1)图1中BC的长为_______cm;(2)图2中a的值为_________.
三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)
17.解一元二次方程:.
解:
18.已知:在平面直角坐标系xOy中,一次函数的图象与y轴交于点A,与x
轴的正半轴交于点B,.
(1)求点A、点B的坐标;(2)求一次函数的解析式.
解:
19.已知:如图,点A是直线l外一点,B,C两点在直线l上,,.
(1)按要求作图:(保留作图痕迹)
①以A为圆心,BC为半径作弧,再以C为圆心,AB为半径作弧,两弧交于点D;
②作出所有以A,B,C,D为顶点的四边形;
(2)比较在(1)中所作出的线段BD与AC的大小关系.
解:(1)
(2)BDAC.
20.已知:如图,ABCD中,E,F两点在对角线BD上,BE=DF.
(1)求证:AE=CF;
(2)当四边形AECF为矩形时,直接写出的值.
(1)证明:
(2)答:当四边形AECF为矩形时,=.
21.已知关于x的方程.
(1)求证:方程总有两个不相等的实数根;
(2)如果方程的一个根为,求k的值及方程的另一根.
(1)证明:
(2)解:
四、解答题(本题7分)
22.北京是水资源缺乏的城市,为落实水资源管理制度,促进市民节约水资源,北京市发
改委在对居民年用水量进行统计分析的基础上召开水价听证会后发布通知,从2014
年5月1日起北京市居民用水实行阶梯水价,将居民家庭全年用水量划分为三档,水
价分档递增,对于人口为5人(含)以下的家庭,水价标准如图1所示,图2是小明
家在未实行新水价方案时的一张水费单(注:水价由三部分组成).若执行新水价方
案后,一户3口之家应交水费为y(单位:元),年用水量为x(单位:),y与x
之间的函数图象如图3所示.
根据以上信息解答下列问题:
(1)由图2可知未调价时的水价为元/;
(2)图3中,a=,b=,
图1中,c=;
(3)当180
解:
五、解答题(本题共14分,每小题7分)
23.已知:正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,.
画出,猜想的度数并写出计算过程.
解:的度数为.
计算过程如下:
24.已知:如图,在平面直角坐标系xOy中,,,点C在x轴的正半轴上,
点D为OC的中点.
(1)求证:BD∥AC;
(2)当BD与AC的距离等于1时,求点C的坐标;
(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
解:(1)
答案
一、选择题(本题共24分,每小题3分)
题号12345678
答案BDCDDCAC
二、填空题(本题共25分,第9~15题每小题3分,第16题4分)
9..10..11.24.12.3.13.>.
14..15.≥1(阅卷说明:若填≥a只得1分)
16.(1)16;(2)17.(每空2分)
三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)
17.解:.
,,.…………………………………………………………1分
.……………………………………………2分
方程有两个不相等的实数根…………………………3分
.
所以原方程的根为,.(各1分)………………5分
18.解:(1)∵一次函数的图象与y轴的交点为A,
∴点A的坐标为.…………………………………………………1分
∴.…………………………………………………………………2分
∵,
∴.…………………………………………………………………3分
∵一次函数的图象与x轴正半轴的交点为B,
∴点B的坐标为.…………………………………………………4分
(2)将的坐标代入,得.
解得.…………………………5分
∴一次函数的解析式为.
…………………………………6分
19.解:(1)按要求作图如图1所示,四边形和
四边形分别是所求作的四边形;…………………………………4分
(2)BD≥AC.……………………………………………………………6分
阅卷说明:第(1)问正确作出一个四边形得3分;第(2)问只填BD>AC或BD=AC只得1分.
20.(1)证明:如图2.
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.……………1分
∴∠1=∠2.………………………2分
在△ABE和△CDF中,
………………………3分
∴△ABE≌△CDF.(SAS)…………………………………………4分
∴AE=CF.……………………………………………………………5分
(2)当四边形AECF为矩形时,=2.………………………………6分
21.(1)证明:∵是一元二次方程,
…………1分
,……………………………………………………2分
无论k取何实数,总有≥0,>0.………………3分
∴方程总有两个不相等的实数根.……………………………………4分
(2)解:把代入方程,有
.…………………………………………………5分
整理,得.
解得.…………………………………………………………………6分
此时方程可化为.
解此方程,得,.
∴方程的另一根为.…………………………………………………7分四、解答题(本题7分)
22.解:(1)4.……………………………………………………………………………1分
(2)a=900,b=1460,(各1分)……………………………………………3分
c=9.…………………………………………………………………………5分
(3)解法一:当180
解法二:当180
由(2)可知:,.
得解得
∴.………………………………………………7分
五、解答题(本题共14分,每小题7分)
23.解:所画如图3所示.………………………………………………………1分
的度数为.……………………………2分
解法一:如图4,连接EF,作FG⊥DE于点G.……3分
∵正方形ABCD的边长为6,
∴AB=BC=CD=AD=6,.
∵点E为BC的中点,
∴BE=EC=3.
∵点F在AB边上,,
∴AF=2,BF=4.
在Rt△ADF中,,
.
在Rt△BEF,Rt△CDE中,同理有
,
.
在Rt△DFG和Rt△EFG中,有.
设,则.………………………………4分
整理,得.
解得,即.…………………………………………5分
∴.
∴.………………………………………………………………6分
∵,
∴.………………………………………7分
解法二:如图5,延长BC到点H,使CH=AF,连接DH,EF.…………………3分
∵正方形ABCD的边长为6,
∴AB=BC=CD=AD=6,.
∴,.
在△ADF和△CDH中,
∴△ADF≌△CDH.(SAS)……………4分
∴DF=DH,①
.
∴.………………5分
∵点E为BC的中点,
∴BE=EC=3.
∵点F在AB边上,,
∴CH=AF=2,BF=4.
∴.
在Rt△BEF中,,
.
∴.②
又∵DE=DE,③
由①②③得△DEF≌△DEH.(SSS)……………………………………6分
∴.…………………………………7分
24.解:(1)∵,,
∴OA=4,OB=2,点B为线段OA的中点.……………………………1分
∵点D为OC的中点,
∴BD∥AC.………………………………………………………………2分
(2)如图6,作BF⊥AC于点F,取AB的中点G,则.
∵BD∥AC,BD与AC的距离等于1,
∴.
∵在Rt△ABF中,,AB=2,点G为AB的中点,
∴.
∴△BFG是等边三角形,.
∴.
设,则,.
∵OA=4,
∴.………………………………………3分
∵点C在x轴的正半轴上,
∴点C的坐标为.………………………………………………4分
(3)如图7,当四边形ABDE为平行四边形时,AB∥DE.
∴DE⊥OC.
∵点D为OC的中点,
∴OE=EC.
∵OE⊥AC,
∴.
∴OC=OA=4.…………………………………5分
∵点C在x轴的正半轴上,
∴点C的坐标为.…………………………………………………6分
设直线AC的解析式为(k≠0).
则解得
∴直线AC的解析式为.………………………………………7分
初中数学试卷3
一、选择题(每小题3分,共30分):
1.下列变形正确的是( )
A.若x2=y2,则x=y B.若 ,则x=y
C.若x(x-2)=5(2-x),则x= -5 D.若(m+n)x=(m+n)y,则x=y
2.截止到x年5月19日,已有21600名中外记者成为上海世博会的注册记者,将21600用科学计数法表示为( )
A.0.216×105 B.21.6×103 C.2.16×103 D.2.16×104
3.下列计算正确的是( )
A.3a-2a=1 B.x2y-2xy2= -xy2
C.3a2+5a2=8a4 D.3ax-2xa=ax
4.有理数a、b在数轴上表示如图3所示,下列结论错误的是( )
A.b
C. D.
5.已知关于x的方程4x-3m=2的解是x=m,则m的值是( )
A.2 B.-2 C.2或7 D.-2或7
6.下列说法正确的是( )
A. 的系数是-2 B.32ab3的次数是6次
C. 是多项式 D.x2+x-1的常数项为1
7.用四舍五入把0.06097精确到千分位的近似值的有效数字是( )
A.0,6,0 B.0,6,1,0 C.6,0,9 D.6,1
8.某车间计划生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,这所列方程为( )
A.13x=12(x+10)+60 B.12(x+10)=13x+60
C. D.
9.如图,点C、O、B在同一条直线上,∠AOB=90°,
∠AOE=∠DOB,则下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠BOD=90°. 其中正确的个数是( )
A.1 B.2 C.3 D.4
10.如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB= ∠MFE. 则∠MFB=( )
A.30° B.36° C.45° D.72°
二、填空题(每小题3分,共18分):
11.x的2倍与3的差可表示为 .
12.如果代数式x+2y的值是3,则代数式2x+4y+5的值是 .
13.买一支钢笔需要a元,买一本笔记本需要b元,那么买m支钢笔和n本笔记本需要 元.
14.如果5a2bm与2anb是同类项,则m+n= .
15.900-46027/= ,1800-42035/29”= .
16.如果一个角与它的余角之比为1∶2,则这个角是 度,这个角与它的补角之比是 .
三、解答题(共8小题,72分):
17.(共10分)计算:
(1)-0.52+ ;
(2) .
18.(共10分)解方程:
(1)3(20-y)=6y-4(y-11);
(2) .
19.(6分)如图,求下图阴影部分的面积.
20.(7分)已知, A=3×2+3y2-5xy,B=2xy-3y2+4×2,求:
(1)2A-B;(2)当x=3,y= 时,2A-B的值.
21.(7分)如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=
14°,求∠AOB的度数
22.(10分)如下图是用棋子摆成的“T”字图案.
从图案中可以看出,第1个“T”字型图案需要5枚棋子,第2个“T”字型图案需要8枚棋子,第3个“T”字型图案需要11枚棋子.
(1)照此规律,摆成第8个图案需要几枚棋子?
(2)摆成第n个图案需要几枚棋子?
(3)摆成第2010个图案需要几枚棋子?
23.(10分)我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?
根据下面思路,请完成此题的解答过程:
解:设星期三中午小明从家骑自行车准时到达学校门口所用时间t小时,则星期一中午小明从家骑自行车到学校门口所用时间为 小时,星期二中午小明从家骑自行车到学校门口所用时间为 小时,由题意列方程得:
24.(12分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.
(1)当PA=2PB时,点Q运动到的
位置恰好是线段AB的三等分
点,求点Q的运动速度;
(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?
(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求 的值.
参考答案:
一、选择题:BDDCA,CDBCB.
二、填空题:
11.2x-3; 12.11 13.am+bn
14.3 15.43033/,137024/31” 16.300.
三、解答题:
17.(1)-6.5; (2) .
18.(1)y=3.2; (2)x=-1.
19. .
20.(1)2×2+9y2-12xy; (2)31.
21.280.
22.(1)26枚;
(2)因为第[1]个图案有5枚棋子,第[2]个图案有(5+3×1)枚棋子,第[3]个图案有(5+3×2)枚棋子,一次规律可得第[n]个图案有[5+3×(n-1)=3n+2]枚棋子;
(3)3×2010+2=6032(枚).
23. ; ;由题意列方程得: ,解得:t=0.4,
所以小明从家骑自行车到学校的路程为:15(0.4-0.1)=4.5(km),
即:星期三中午小明从家骑自行车准时到达学校门口的速度为:
4.5÷0.4=11.25(km/h).
24.(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得:
PA=40,OP=60,故点P运动时间为60秒.
若AQ= 时,BQ=40,CQ=50,点Q的运动速度为:
50÷60= (cm/s);
若BQ= 时,BQ=20,CQ=30,点Q的运动速度为:
30÷60= (cm/s).
②当P在线段延长线上时,由PA=2PB及AB=60,可求得:
PA=120,OP=140,故点P运动时间为140秒.
若AQ= 时,BQ=40,CQ=50,点Q的运动速度为:
50÷140= (cm/s);
若BQ= 时,BQ=20,CQ=30,点Q的运动速度为:
30÷140= (cm/s).
(2)设运动时间为t秒,则:
①在P、Q相遇前有:90-(t+3t)=70,解得t=5秒;
②在P、Q相遇后:当点Q运动到O点是停止运动时,点Q最多运动了30秒,而点P继续40秒时,P、Q相距70cm,所以t=70秒,
∴经过5秒或70秒时,P、Q相距70cm .
(3)设OP=xcm,点P在线段AB上,20≦x≦80,OB-AP=80-(x-20)=100-x,EF=OF-OE=(OA+ )-OE=(20+30)- ,
∴ (OB-AP).
初中数学试卷4
一、选择题(每小题3分,共36分)
1.如图,BE平分∠ABC,DE∥BC,则图中相等的角共有( )
A.3对 B.4对 C.5对 D.6对
2.如图所示,直线l1∥l2,∠1=55°,∠2=62°,则∠3为( )
A.50° B.53° C.60° D.63°
3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )
A.10° B.20° C.25° D.30°
4.(2015•河北中考)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )
A.120° B.130° C.140° D.150°
5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( )
A.30° B.45° C.60° D.75°
6.如图所示,∠AOB的两边OA、OB均为平面反光镜,且∠AOB=28°.在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB =( )
A.28° B.56° C.100° D.120°
7.如图所示,直线a,b被直线c所截,现给出下列四个条件:
①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.
其中能判断a∥b的条件的序号是( )
A.①② B.①③ C.①④ D.③④
8.如图所示,AB∥CD,直线EF与AB、CD分别相交于点G,H,∠AGH=60°,则∠EHD的度数是( )
A.30° B.60° C.120° D.150°
9.若直线a∥b,点A、B分别在直线a、b上,且AB=2 cm,则a、b之间的距离( )
A.等于2 cm B.大于2 cm
C.不大于2 cm D.不小于2 cm
10.如图所示,直线a∥b,直线c与a、b相交,∠1=60°,则∠2等于( )
A.60° B.30° C.120° D.50°
11.如图所示,把矩形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( )
A.110° B.115° C.120° D.130°
12.如图,△DEF是由△ABC平移得到,且点B、E、C、F在同一直线上,若BF=14,CE=6,则BE的长度为( )
A.2 B.4 C.5 D.3
二、填空题(每小题3分,共24分)
13.如图所示,在不等边△ABC中,已知直线DE∥BC,∠ADE=60°,则图中等于60°的角还有 .
14.一个宽度相等的纸条按如图所示方法折叠,则∠1= .
15.如图所示,已知∠1=∠2,再添加条件 可使CM∥EN.(只需写出一个即可)
16.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是 .
17.如图,标有角号的7个角中共有_______对内错角,________对同位角,_______对同
旁内角.
18.货船沿北偏西62°方向航行,后因避礁先向右拐28°,再向左拐28°,这时货船的航行方向是 .
19.如图所示,若∠1=82°,∠2=98°,∠3=77°,则∠4= .
20.如图,已知∠1=∠2,∠ =35°,则∠3=_____.
三、解答题(共40分)
21.(8分)已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.
22.(8分)如图所示,要想判断AB是否与CD平行,我们可以测量哪些角?请写出三种方案,并说明理由.
23.(8分)如图所示,已知AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,求∠EAB的度数.
24.(8分)如图所示,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB,试说明:CD平分∠ACE.
25.(8分)如图,在四边形ABCD中,AD∥BC,BC>AD,将AB,CD分别平移到EF和EG的位置,若AD=4 cm,BC=8 cm,求FG的长.
第1章 平行线检测题参考答案
1.C 解析:∵ DE∥BC,∴ ∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.
又∵ BE平分∠ABC,∴ ∠ABE=∠EBC,即∠ABE=∠DEB.
∴ 图中相等的角共有5对.故选C.
2.D 解析:如图所示,∠5=∠1=55°,因为l1∥l2,所以∠4=∠2=62°,由三角形内角和定理得∠3=180°-∠4-∠5=180°-62°-55°=63°.
3.C 解析:由题意,得∠1+∠2=60°,所以∠2=60°-∠1=60°-35°=25°.
4.C 解析:如图,过点C作CM∥AB, ∴ .
∵ AB∥EF, ∴ CM∥EF.
∵ ,∴ , ,
∴ .
5.B 解析:因为∠EAB=45°,所以∠BAD=180°-∠EAB=180°-45°=135°.因为
AB∥CD,所以∠ADC=∠BAD=135°,所以∠FDC=180°-∠ADC=45°.故选B.
6.B 解析:∵ QR∥OB,∴ ∠AQR=∠AOB=28°,∠PQR+∠QPB=180°.
由反射的性质知,∠AQR=∠OQP=28°,∴ ∠PQR=180°-28°-28°=124°,
∴ ∠QPB=180°-∠PQR=180°-124°=56°.
7.A
8.C 解析:∠BGH=180°-∠AGE=180°-60°=120°,由AB∥CD,得∠EHD=∠BGH= 120°.
9.C 解析:当AB垂直于直线a时,AB的长度为a、b间的距离,即a、b之间的距离为2 cm;当AB不垂直于直线a时,a、b之间的距离小于2 cm,故a、b之间的距离小于或等于2 cm,也就是不大于2 cm,故选C.
10.A 解析:要求∠2的度数,根据对顶角的性质,可得∠2=∠3,所以只要求出∠3的度数即可解决问题.因为a∥b,根据“两直线平行,同位角相等”,可得∠3=∠1=60°,所以∠2=∠3=60°.
11.B 解析:由折叠的性质,可知∠BFE= =65°.因为AD∥BC,所以∠AEF=180°-∠BFE=115°.
12.B 解析:由平移的性质知BC=EF,即BE=CF, .
13.∠B
14.65° 解析:根据题意得2∠1=130°,解得∠1=65°.故填65°.
15.此题答案不,可添加DM∥FN等.
16.130° 解析:因为AB∥CD,所以∠B=∠C=50°.因为BC∥DE,所以∠C+∠D=180°,所以∠D=180°-50°=130°.
17.4;2;4 解析:共有4对内错角,分别是∠1和∠4,∠2和∠5,∠6和∠1,∠5和∠7;2对同位角:分别是∠7和∠1,∠5和∠6;4对同旁内角:分别是∠1和∠5、∠3和∠4、∠3和∠2、∠4和∠2.
18.北偏西62° 解析:根据同位角相等,两直线平行可知,货船未改变航行方向.
19.77°
20.35° 解析:因为∠1=∠2,所以AB∥CE,所以∠3=∠B.
又∠B=35°,所以∠3=35°.
21.证明:∵ ∠BAP+∠APD=180°,
∴ AB∥CD.∴ ∠BAP=∠APC.
又∵ ∠1=∠2,∴ ∠BAP−∠1=∠APC−∠2,即∠EAP=∠APF,
∴ AE∥FP.∴ ∠E=∠F.
22.解:∠EAB=∠C⇒AB∥CD(同位角相等,两直线平行);
∠BAD=∠D⇒AB∥CD(内错角相等,两直线平行);
∠BAC+∠C=180°⇒AB∥CD(同旁内角互补,两直线平行).
23.解:∵ AB=BC ,∴ ∠BAC=∠ACB=180°-110°=70°.
∴ ∠B=180°-70°×2=40°.
∵ AE∥BC,∴ ∠EAB=∠B=40°.
24.解:∵ ∠DCA=∠CAB(已知),
∴ AB∥CD(内错角相等,两直线平行),
∴ ∠ABC+∠BCD=180°(两直线平行,同旁内角互补).
∵ ∠ABC=90°(已知),∴ ∠BCD=90°.
∵ ∠1+∠2+∠ACD+∠DCE=180°(平角的定义),
∴ ∠2+∠DCE=90°,∴ ∠2+∠DCE=∠1+∠ACD.
∵ ∠1=∠2(已知),∴ ∠DCE=∠ACD.
∴ CD平分∠ACE(角平分线的定义).
25.解:因为AD∥BC,且AB平移到EF,CD平移到EG,
所以AE=BF,DE=CG,所以AE+DE=BF+CG,即AD=BF+CG.
因为AD=4 cm,所以BF+CG=4 cm.
因为BC=8 cm,所以FG=8-4=4(cm).
初中数学试卷5
一、用心选一选(每题只有一个答案,3分×10=30分)
1.关于0,下列几种说法不正确的是()
A.0既不是正数,也不是负数
B.0的相反数是0
C.0的绝对值是0
D.0是最小的数
考点:绝对值;有理数;相反数.
分析:根据0的特殊性质逐项进行排除.
解答:解:0既不是正数,也不是负数,A正确;
0的相反数是0,0的绝对值是0,这都是规定,B、C正确;
没有最小的数,D错误.
故选D.
点评:本题主要是对有理数中0的考查,熟记0的特殊性对解题很有帮助.
2.下列各数中,在﹣2和0之间的数是()
A.﹣1
B.1
C.﹣3
D.3
考点:有理数大小比较.
分析:根据有理数的大小比较法则比较即可.
解答:解:A、﹣2<﹣1<0,故本选项正确;
B、1>0,1不在﹣2和0之间,故本选项错误;
C、﹣3<﹣2,﹣3不在﹣2和0之间,故本选项错误;
D、3>0,3不在﹣2和0之间,故本选项错误;
故选A.
点评:本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.
3.2008年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()
A.14℃
B.﹣14℃
C.38℃
D.﹣38℃
考点:有理数的减法.
分析:由北京气温减去哈尔滨的气温,即可得到结果.
解答:解:﹣12﹣(﹣26)=﹣12+26=14(℃),
故选:A.
点评:此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.
4.下列计算结果为1的是()
A.(+1)+(﹣2)
B.(﹣1)﹣(﹣2)
C.(+1)×(﹣1)
D.(﹣2)÷(+2)
考点:有理数的混合运算.
分析:根据有理数的加减乘除法的法则依次计算即可.
解答:解:A、(+1)+(+2)=3,故本选项错误;
B、(﹣1)﹣(﹣2)=(﹣1)+2=1,故本选项正确;
C、(+1)×(﹣1)=﹣1,故本选项错误;
D、(﹣2)÷(+2)=﹣1,故本选项错误.
故选B.
点评:本题考查了有理数的混合运算,是基础知识要熟练掌握.
5.计算﹣1+,其结果是()
A.
B.﹣
C.﹣1
D.1
考点:有理数的加法.
分析:根据有理数的加法法则,即可解答.
解答:解:﹣1+,
故选:B.
点评:本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.
6.下列单项式中,与﹣3a2b为同类项的是()
A.3a2b
B.b2a
C.2ab3
D.3a2b2
考点:同类项.
分析:根据所含字母相同,并且相同字母的指数也相同的项叫做同类项即可解答.
解答:解:在﹣3a2b中,a的指数是2,b的指数是1;
A、a的指数是2,b的指数是1,所以是同类项;
B、a的指数是1,b的指数是2,所以不是同类项;
C、a的指数是1,b的指数是3,所以不是同类项;
D、a的指数是2,b的指数是2,所以不是同类项;
故选A.
点评:本题考查了同类项的知识,属于基础题,注意判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.
7.下列计算正确的是()
A.2a+2b=4ab
B.3___2﹣___2=2
C.﹣2a2b2﹣3a2b2=﹣5a2b2
D.a+b=a2
考点:合并同类项.
分析:根据合并同类项即把系数相加,字母与字母的指数不变.
解答:解:A、2a与2b不是同类项,不能合并,故错误;
B、3___2﹣___2=2___2,故错误;
C、正确;
D、a与b不是同类项,不能合并,故错误;
故选:C.
点评:本题考查了合并同类项,解决本题的关键是明确同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.
8.某同学自己装订笔记本,第一本用了a张纸,第二本用的纸张数是第一本的,两本共用了()张纸.
A.
B.
C.
D.
考点:列代数式.
分析:首先求出第二本用纸的数量,然后求出两天共用的纸的数量.
解答:解:由题意知第二本用纸量为a,故两天共用纸a+a张,故选A.
点评:本题主要考查列代数式的知识点,找出等量关系是解题的关键.
9.如图,a、b在数轴上的位置如图,则下列各式正确的是()
A.ab>0
B.a﹣b>0
C.a+b>0
D.﹣b
考点:数轴.
专题:计算题;数形结合.
分析:根据数轴上的数,右边的数总是大于左边的数,即可得到a,b的大小关系,判断选项是否正确.
解答:解:A、由图可得:a>0,b<0,且﹣b>a,a>b
∴ab<0,故本选项错误;
B、由图可得:a>0,b<0,a﹣b>0,且a>b
∴a+b<0,故本选项正确;
C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a
∴a+b<0;
D、由图可得:﹣b>a,故本选项错误.
故选B.
点评:本题主要考查了利用数轴比较实数的大小.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.
10.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球点.而此时“珠峰大本营”的温度为﹣4℃,峰顶的温度为(结果保留整数)()
A.﹣26℃
B.﹣22℃
C.﹣18℃
D.22℃
考点:有理数的混合运算.
专题:应用题.
分析:由于“海拔每上升100米,气温就下降0.6℃”,因此,应先求得峰顶与珠峰大本营的高度差,进而求得两地的温度差,最后依据珠峰大本营的温度计算出峰顶的温度.
解答:解:由题意知:峰顶的温度=﹣4﹣(8844.43﹣5200)÷100×0.6≈﹣25.87≈﹣26℃.
故选A.
点评:本题考查有理数运算在实际生活中的应用.利用所学知识解答实际问题是我们应具备的能力,这也是今后中考的命题重点.认真审题,准确地列出式子是解题的关键.本题的阅读量较大,应仔细阅读,弄清楚题意.
二、填空题(共8小题,每小题3分,满分24分)
11.商店运来一批苹果,共8箱,每箱n个,则共有8n个苹果.
考点:列代数式.
分析:苹果的总数=每箱的个数×箱数.
解答:解:苹果的总个数为:8×n=8n.
故答案是8n.
点评:本题考查了根据实际问题列代数式,是一道基础题目,题意明确,题型简单.
12.用科学记数法表示下面的数125000000=1.25×108.
考点:科学记数法—表示较大的数.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:解:将125000000用科学记数法表示为:1.25×108.
故答案为:1.25×108.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
13.的倒数是﹣3.
考点:倒数.
分析:根据倒数的定义.
解答:解:因为(﹣)×(﹣3)=1,
所以的倒数是﹣3.
点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
14.单项式﹣___3y2的系数是﹣1,次数是5.
考点:单项式.
分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.
解答:解:根据单项式系数、次数的定义可知,单项式﹣___3y2的系数是﹣1,次数是5.
点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.系数是1或﹣1时,不能忽略.
15.多项式3___3﹣2___3y﹣4y2+___﹣y+7是4次6项式.
考点:多项式.
分析:根据多项式的定义,若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的次数,就是这个多项式的次数.
解答:解:根据多项式的定义,多项式3___3﹣2___3y﹣4y2+___﹣y+7是4次6项式.
点评:要准确掌握多项式的定义,注意常数项也是多项式的一项.
16.化简﹣[﹣(﹣2)]=﹣2.
考点:相反数.
分析:根据多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正可得答案.
解答:解:﹣[﹣(﹣2)]=﹣2,
故答案为:﹣2.
点评:此题主要考查了相反数,关键是掌握多重符号的化简的方法.
17.计算:﹣a﹣a﹣2a=﹣4a.
考点:合并同类项.
分析:合并同类项即把系数相加,字母与字母的指数不变.
解答:解:﹣a﹣a﹣2a=﹣4a,
故答案为:﹣4a.
点评:本题考查了合并同类项,解决本题的关键是明确同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.
18.一个三位数,百位数字是___,十位数字是y,个位是3,则这个三位数是100___+10y+3.
考点:列代数式.
分析:百位数字___要放到百位上去要乘以100,同样y放到十位上去要乘以10,于是得到这个三位数是100___+10y+3.
解答:解:一个三位数,百位数字是___,十位数字是y,个位是3,则这个三位数是100___+10y+3.
故答案为100___+10y+3.
点评:本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.注意代数式的书写形式.
三.努力做一做(每小题6分,共24分)
19.计算:10﹣24﹣28+18+24.
考点:有理数的加减混合运算.
专题:计算题.
分析:原式结合后,相加即可得到结果.
解答:解:原式=10+(﹣24+24)+(﹣28+18)=10﹣10=0.
点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.
20.计算:(﹣3)÷(﹣)×(﹣)
考点:有理数的除法;有理数的乘法.
分析:根据有理数的除法、乘法,即可解答.
解答:解:原式==﹣2.
点评:本题考查了有理数的除法、乘法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.
21.计算:(﹣1)2008﹣(﹣14+2)×[2﹣(﹣3)2].
考点:有理数的混合运算.
专题:计算题.
分析:原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.
解答:解:原式=1﹣2×(﹣7)=1+14=15.
点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
22.先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.
考点:整式的加减—化简求值.
分析:原式去括号合并得到最简结果,将a的值代入计算即可求出值.
解答:解:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)]
=﹣3a2+4ab+[a2﹣4a﹣4ab]
=﹣3a2+4ab+a2﹣4a﹣4ab
=﹣2a2﹣4a,
当a=﹣2时,
原式=﹣2×(﹣2)2﹣4×(﹣2)
=﹣8+8
=0
点评:此题考查了整式的加减﹣化简求值,熟练运用运算法则进行计算和化简是解本题的关键.
四、解答题(共5小题,满分42分)
23.把下列各数填入表示它所在的数集的大括号:
﹣2.4,3,21.08,0,﹣100,﹣(﹣2.28),﹣,﹣|﹣4|
正有理数集合:{…}
负有理数集合:{…}
整数集合:{…}
负分数集合:{…}.
考点:有理数.
分析:按照有理数的分类填写:
解答:解:正有理数集合:{3,21.08,﹣(﹣2.28),…}
负有理数集合:{﹣2.4,﹣100,﹣,﹣|﹣4|…}
整数集合:{3,0,﹣100,﹣|﹣4|…}
负分数集合:{﹣2.4,﹣,…}
点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.
注意整数和正数的区别,注意0是整数,但不是正数.
24.某校团委组织160名学生(其中女生b人)去树林植树,每个男生植树___棵,每个女生植树y棵,你能用代数式表示他们共植树的棵数吗?
解因为女生为b人,所以男生为(160﹣b)人.根据题意,男生共植树(160﹣b)___棵,女生共植树by棵,所以他们共植树[(160﹣b)___+by]棵.
考点:列代数式.
分析:用总人数减去女生人数即可得到男生人数,再利用每个男生植树___棵,每个女生植树y棵得到男生和女生植树的棵数,两者的和为总植树数.
解答:解:因为女生为b人,所以男生为(160﹣b)人.根据题意,男生共植树(160﹣b)___棵,女生共植树by棵,所以他们共植树[(160﹣b)___+by]棵.
故答案为(160﹣b),(160﹣b)___,by,[(160﹣b)___+by].
点评:本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式;注意代数式的书写.
25.某出租车沿公路左右行驶,向左为正,向右为负,某天从A地出发后到收工回家所走的路线如下:(单位:千米)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5
(1)问收工时离出发点A多少千米?
(2)若该出租车每千米耗油0.3升,问从A地出发到收工共耗油多少升?
考点:正数和负数.
专题:计算题.
分析:弄懂题意是关键.
(1)向左为正,向右为负,依题意列式求出和即可;
(2)要求耗油量,需求他共走了多少路程,这与方向无关.
解答:解:(1)8﹣9+4+7﹣2﹣10+18﹣3+7+5=25(千米).
答:收工时离出发点A25千米;
(2)|+8|+|﹣9|+|+4|+|+7|+|﹣2|+|﹣10|+|+18|+|﹣3|+|+7|+|+5|=73,0.3×73=21.9(升).
答:从A地出发到收工共耗油21.9升.
点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,(2)中注意需要求出它们的绝对值的和.
26.四人做传数游戏,甲任报一个数给乙,乙把这个数加1传给丙,丙再把所得的数乘以2后传给丁,丁把所听到的数减1报出答案.
(1)如果甲所报的数为___,请把丁最后所报的答案用代数式表示出来,
(2)若甲报的数为9,则丁的答案是多少?
(3)若丁报出的答案是15,则甲传给乙的数是多少?
考点:列代数式.
专题:计算题.
分析:(1)利用代数式依次表示出乙、丙所报的数,于是利用丁把所听到的数减1可得到丁最后所报的数;
(2)给定___=9时,计算代数式的值即可;
(3)给定代数式的值求___,相当于解___的一元一次方程.
解答:解:(1)甲所报的数为___,则乙所报的数为(___+1),丙所报的数为2(___+1),丁最后所报的数为2(___+1)﹣1;
(2)当___=9时,2(___+1)﹣1=2×(9+1)﹣1=19;
所以若甲报的数为9,则丁的答案是19;
(3)2(___+1)﹣1=15,解得___=7,
所以若丁报出的答案是15,则甲传给乙的数是7.
点评:本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.
27.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度0.60元收费.
(1)若某住户四月份的用电量是a度,求这个用户四月份应交多少电费?
(2)若该住户五月份的用电量是200度,则他五月份应交多少电费?
考点:列代数式;代数式求值.
专题:应用题.
分析:(1)分类讨论:当a≤140时,则这个用户四月份应电费为0.45a元;当a>140时,这个用户四月份应电费为两部分,即140度的电费和超过140度的部分的电费;
(2)由于140<200,所以五月份应交电费按第二个式子计算.
解答:解:(1)当a≤140时,这个用户四月份应电费为0.45a元;
当a>140时,这个用户四月份应电费为[0.45×140+(a﹣140)•0.6]元;
(2)∵140<200,
∴五月份应交电费为0.45×140+•0.6=99(元).
初中数学试卷6
一、选择题(本大题共8小题,每小题3分,共24分)
每题给出四个答案,其中只有一个符合题目的要求,把选出的答案编号填在下表中.
题号 1 2 3 4 5 6 7 8
答案
1.在式子 , , , , , 中,分式的个数是
A.5 B.4 C.3 D.2
2.反比例函数 的图像经过点 ,则该函数的图像在
A. 第一、三象限 B.第二、四象限 C. 第一、二象限 D. 第三、四象限
3.在下列性质中,平行四边形不一定具有的性质是
A.对边相等 B.对边平行 C. 对角互补 D.内角和为3600
4. 菱形 的两条对角线长分别为 和 ,则它的周长和面积分别为
A. B. C. D.
5.函数 的图像上有两点 , ,若 0﹤ ﹤ ,则
A. ﹤ B. ﹥ C. = D. , 的大小关系不能确定
6.在下列各组数据中,可以构成直角三角形的是
A. 0.2,0.3,0.4 B. , , C. 40,41,90 D. 5,6,7
7.样本数据是3,6,10,4,2,则这个样本的方差是
A.8 B.5 C.3 D.
8. 如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB= ,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;
④BO⊥CD,其中正确的是
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
二、填空题:(本大题共8小题,每小题3分,共24分)
9.生物学家发现一种病毒的长度约为0.00000043mm,用科学记数法表示这个数的结果
为 .
10. 若 的值为零, 则 的值是 .
11. 数据1,2,8,5,3,9,5,4,5,4的众数是_________,中位数是__________.
12. 若□ABCD的周长为100cm,两条对角线相交于点O,△AOB的周长比△BOC的周长多10cm,那么AB= cm,BC= cm.
13. 若关于 的分式方程 无解,则常数 的值为 .
14.若函数 是反比例函数,则 的值为________________.
15.已知等腰梯形的一个底角为600,它的两底边分别长10cm、16cm,则等腰梯形的周长是_____________________.
16.如图,将矩形 沿直线 折叠,顶点 恰好落在 边上 点处,已知 , ,则图中阴影部分面积为 __.
三、(本大题共3小题,每小题6分,共18分)
17.先化简 ,再取一个你认为合理的x值,代入求原式的值.
18. 如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。
(1)使三角形三边长为3, , 。
(2)使平行四边形有一锐角为45°,且面积为4。
(1) (2)
19. 北京时间2010年4月14日7时49分,青海玉树发生7.1级地震,灾情牵动着全国各族人民的心。无为县某中心校组织了捐款活动.小华对八年级(1)(2)班捐款的情况进行了统计,得到如下三条信息:
信息一:(1)班共捐款540元,(2)班共捐款480元.
信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的 .
信息三:(1)班比(2)班少3人.
请你根据以上信息,求出八(1)班平均每人捐款多少元?
四.(本大题共2小题,每小题8分,共16分)
20. 如图,在四边形ABCD中,∠B =90°,AB= ,
∠BAC =30°,CD=2,AD= ,求∠ACD的度数。
21.工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图①),使 ;
(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据数学道理是:
;
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: 。
五、(本大题共2小题,每小题9分,共18分)
22. 某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:
1号 2号 3号 4号 5号 总分
甲班 100 98 110 89 103 500
乙班 86 100 98 119 97 500
(1)根据上表提供的数据填写下表:
优秀率 中位数 方差
甲班
乙班
(2)根据以上信息,你认为应该把冠军奖状发给哪一个班级? 简述理由.
23. 如图,梯形 中, 且 , 、 分别是两底的中点,连结 ,若 ,求 的长。
六、(本大题共2小题,每小题10分,共20分)
24. 如图,一次函数 的图像与反比例函数 的图像交于 两点,与 轴交于点 ,与 轴交于点 ,已知 ,点 的坐标为 ,过点 作 轴,垂足为 。
(1)求反比例函数和一次函数的解析式;
(2)求 的面积。
(3)根据图像回答:当x 为何值时,一次函数的函数值大于
反比例函数的函数值?
25. 如图16,在直角梯形ABCD中,AD∥BC, ,AD = 6,BC = 8, ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.
设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到值,请回答:该值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
2011-2012年学年度下学期期末质量检测
八年级数学试题答案
一、选择题(每小题3分,共24分)
1-4. CBCB 5-8.ACAD
二、填空(每小题3分,共24分)
9. 10. 3 11. 5,4. 2. 12. 30,20
13. 2 14. 2 15. 38cm 16. 30cm2
17、解: = …………(1分)
= = …………………………(3分)
= ……………………………………………………………………(4分)
因为 x≠+1、-1、0。所以可以取x=2。…………………………(5分)
原式= …………………………………………………………………………(6分)
18、每小题3分,略
19、解:设八(1)班每人捐款 元,则八(2)班每人捐 元.……………………1分
则 …………………………………3分
去分母得
解得 ……………………………………4分
检验: …………………………………………………5分
答:略 …………………………………………………6分
20、解:因为∠B =90°,AB= ,∠BAC =30°
设BC= , 则AC= ………………………………(1分)
所以AC2=AB2+BC2 ………………………(3分)
所以解得x=1, 所以AC=2…………………(4分)
又因为CD=2,AD=2 ;22+22=
所以AD2=AC2+DC2…………………(6分)
所以△ACD为等腰直角三角形…………(7分)
所以∠ACD=900. …………………(8分)
21、解:(2)平行四边形,两组对边分别相等的四边形是平行四边形
(3)矩形,有一个角是直角的平行四边形是矩形 (每空2分)
22、(1)每空1分 …… …… …… …… 6分
优秀率 中位数 方差
甲班 60% 100 46.8
乙班 40% 98 114
(2)答; 应该把冠军奖状发给甲班。 …… …… …… …… …… 7分
理由:根据以上信息,甲班的优秀率和中位数都比乙班高,而方差却比乙班小,说明甲班参赛学生的整体水平比乙班好,所以应该把冠军奖状发给甲班。
…… …… …… …… …… 9分
23、解:过点 分别作 交 于 (如图)
…… …… …… …… …… 2分
即 是直角三角形。 …… 3分
, 四边形 、 都是平行四边形
…… ……5分
在 中, …… ……6分
又 、 分别是两底的中点 …… ……7分
即 是 斜边的中线 ……8分
…… ………… ………… ………… …… ……9分
(2)
= …(8分)
(3)
…… ………… …… …… …… …… …… …… …… ……(10分)
25、解:(1) …… …… …… ………… …… …… …… (2分)
(2)当BP = 1时,有两种情形:
①如图,若点P从点M向点B运动,有 MB = = 4,MP = MQ = 3,
∴PQ = 6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴ .
∵AB = ,∴点E在AD上.
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面积为 . …… …… …… (5分)
②若点P从点B向点M运动,由题意得 .
PQ = BM + MQ BP = 8,PC = 7.设PE与AD交于点F,QE与AD或AD的延长线交于点G,过点P作PH⊥AD于点H,
则HP = ,AH = 1.在Rt△HPF中,∠HPF = 30°,
∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2,
∴点G与点D重合,如图.此时△EPQ与梯形ABCD
的重叠部分就是梯形FPCG,其面积为 .…… …… (8分)
(3)能. …… …… …… …… (10分)
初中数学试卷7
一、选择题(共10个小题,每小题4分,共40分)
1、下列方程属于一元二次方程的是( )
A. B.
C. D.
2、一元二次方程 的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
3、如果关于 的方程 有实数根,则 满足 条件是( )
A. B. 且 C. 且 D.
4、用配方法解方程 ,原方程应变为( )
A. B . C. D.。
5、方程(x+2)(x-3)=5x(x-3)的一般形式是( )
A.4x+2=0 B.-4×2 +14x-6=0 C.4×2 -14x+6 D.2×2-7x+3=0
6、下列各式中属于最简二次根式的是( )
A. B. C. D.
7、近几年我国物价一直上涨,已知原价为484元的新产品,经过连续两次涨价
﹪后,现售价为625元,则根据题意列方程,正确的是( )
A.484 (1+ a﹪)=625. B. 484(1+ 2a﹪)=625
C.484(1- a﹪)=625. D.484(1+ a﹪)2=625.
8、若 ,则( )
A.b>3 B.b<3 C.b≥3 D.b≤3
9、方程 的根为( )
A. B. C. D.
10、已知关于 的一元二次方程(m-1) 2+ + m2+2m-3=0的一个根为0,
则m的值为( ).
A.1 B.-3 C.1或-3 D. 不等于1的任意实 数
二、填空题(共5个小题,每小题4分,共20分)
11、若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是
12、要使x-1 3-x 有意义,则x的取值范围是 。
13、三角形的三边长分别为 , , ,则这个三角形的周长为
cm
14、观察分析下列一组数,寻找规律:0, , ,3, , , ,…,
那么第26个数是_____________.
15.已知 , ,且 是方程 的一个根,则 的值是 .
三、解答题(共2个题,每小题8分,共16分)
16、计算:
17.解方程:(每小题4分)
(1) (用公式法)
(2) 3×2 -2=-x (用配方法解)
四、解答题(共2个题,每小题8分,共16分)
18、已知 = +1, = -1,求 2 – 2 – 2 的值。
19、已知1- 是方程x2-2x-c=0的一个根,求方程的另一个根及c的值
五、、解答题(共2个题,每小题10分,共20分)
20、先化简再求值.
,其中 = +1
21、已知关于x的方程 2-(m+2)x+(2m-1)=0。
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
六、解答题(本题12分)
22、某商场销售一批衬衫,平均每天可售出20件,每天盈利40元,为了扩大销量,增加盈利,尽快减 少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件
(1)若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?
(2) 每件衬衫应降价多少元时,商场每天盈利?
七、解答题(本题12分)
23、已知关于 的方程
(1)若这个方程有实数根,求 的取值范围;
(2)若这个方程有一个根为1,求 的值;
(3)若以方程 的两个根为横坐标、纵坐标的点恰在反比例函数 的图像上,求满足条件的 的最小值。
八、解答题(本题14分)
24、如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动点,点Q从B点沿BC边向点C以占2cm/s的速度移动,两点同时出发.
(1)问几秒后,△PBQ的面积为8cm2?
(2)出发几秒后线段PQ的长为4 cm?
(3)△PBQ的面积能否为10cm2?若能,求出时间;若不能说明理由.
九年级上数学 参考答案
一、选择题(共10个小题,每小题4分,共40分)
CADCD ADDCB
二、填空题(共5个小题,每小题4分,共20分)
11、 且 12、1≤x<3 13、 14、5 15、5
三、解答题(共2个题,每小题8分,共16分)
16、16 -4 17. (1) (2)x=-1,x=
四、解答题(共2 个题,每小 题8分,共 16分)
18、4 -2 19、12
五、解答题(共2个题,每小题10分,共20分)20、 ; 21、1+ C=2
六、解答题(本题12分)22、(1)20元 (2)15元
七、解答题(本题12分)23、(1):(1)k≤5;(2)k1=3+ k2=3-
(3)设方程的两个根为x1,x2,根据题意得m=x1•x2.
又由一元二次方程根与系数的关系得x1x2=k2-4k-1,
那么m=k2-4k-1=(k-2)2-3,
所以,当k=2时,m取得最小值-3.
八、解答题(本题14分)
24、解:设P、Q经过t秒时,△PBQ的面积为8cm2,
则PB=6-t,BQ=2t,
∵∠B=90°,AB=6cm,BC=8cm,
∴ (6-t)2t=8,
解得,t1=2,t2=4,
∴当P、Q经过2或4秒时,△PBQ的面积为8cm 2;
(2)设x秒后,PQ=4 cm,由题意,得(6-x)2+4×2=32,
解得:x1= ,x2=2
(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ= ×(6-y)×2y=10,
即y2-6x+10=0,
∵△=b2-4ac=36- 4×10=-4<0,
∴△PBQ的面积不会等于10cm2.
初中数学试卷8
一、选择题(本题有10小题,每小题3分,共30分)
1.已知反比例函数 的图象经过点(1,-2),则这个函数的图象一定经过点( )A.(2,1) B.(2,-1) C.(2,4) D.(-1,-2)
2.抛物线y=3(x-1)2+2的顶点坐标是( )
A.(-1,-2) B.(-1,2) C.(1, 2) D.(1,-2)
3. 如图,点A、B、C在⊙O上,若∠C=35°,则 的度数为( )
A.70° B.55° C.60° D.35°
4. 如图,在直角△ABC中,∠C=90°,若AB=5,AC=4,则tan∠B=( )
(A)35 (B)45 (C)34 (D)43
5.如图,在⊙O中,AB是弦,OC⊥AB于C,若AB=16, OC=6,则⊙O的半径OA等于( )
A.16 B.12 C.10 D.8
6.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒。当你抬头看信号灯时,看到黄灯的概率是( )
A、 B、 C、 D、
7.如图,在△ABC中,∠C=900,D是AC上一点,DE⊥AB于点E,
若AC=8,BC=6,DE=3,则AD的长为( )
A.3 B.4 C.5 D.6
8. 如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )
9.下列图形中四个阴影三角形中,面积相等的是( )
10.函数y1=x(x≥0),y2=4x(x>0)的图象如图所示,下列四个结论:
①两个函数图象的交点坐标为A (2,2); ②当x>2时,y1>y2; ③当0﹤x﹤2时,y1>y2; ④直线x=1分别与两函数图象交于B、C两点,则线段BC的长为3;
则其中正确的结论是( )
A .①②④ B.①③④ C.②③④ D.③④
二、填空题(本题有6小题,每小题4分,共24分)
11.扇形半径为30,圆心角 为120°,用它 做成一个圆锥的侧面,则圆锥底面半径为 。
12.如图,D是△ABC中边AB上一点;请添加一个条件: ,使 △ACD∽△ABC。
13.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于 。[来源:Z_k.Com]
14.如图, 若点 在反比例函数 的图象上, 轴于点 , 的面积为3,则 。
15.如 图,点P的坐标为(3,0 ), ⊙P的半径为5,且⊙P与x轴交于点A,B,与y轴交于点 C、D,则D的坐标是 。
16. 如图,直线l1⊥x轴于点(1,0),直 线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线ln⊥x 轴于点(n,0);函数y= x的图象与直线l1,l2,l3,…ln分别交于点A1,A2,A3,…An,函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果△OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S 3,…四边形An﹣1AnBnBn﹣1的面积记作Sn,那么S2012= 。
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(本题6分)求下列各式的值:
(1) –
(2)已知 ,求 的值.
18.(本题6分)如图,AB和CD是同一地面上的两座相距36米的楼房,
在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角
为30° ;求楼CD的高。(结果保留根号)
19.(本题6分)李明和张强两位同学为得到一张星期六观看足球比赛的入场券,设计了一种游戏方案:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,记下数字后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为奇数,张强得到入场券;否则,李明得到入场券.
(1)请你用树状 图(或列表法)分析这个游戏方案所有可能出现的结果;
(2)这个方案对双方是否公平?为什么?
20.(本题8分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC= ,OE=3;求:
(1)⊙O的半径;
(2)阴影部分的面积。
21.(本题8分)如图,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)若正方形的边长为4,设AE=x,BF=y,求y与x
的函数关系式;并求当x取何值时,BF的长为1.
22.(本题10分)如图,在一面靠墙的空地上用长为24米的篱 笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积,值是多少?
(3)若墙的可用长度为8米,求围成花圃的面积。
23.(本题10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
⑴如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
⑵如图2,当点D在边BC的延长线上时,其他条件不变, 请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并说明理由;
⑶如图3,当点D在边CB的延长线上 时,且点A、F分别在直线BC的异侧,其他条件不变,请直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
24.(本题12分)如图,抛物线 与x轴交A、B两点(A点在B点左侧),直线 与抛物线交于A、C两点,其中C点的横坐标为2;
(1)求A、B 两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
18.(本题6分)(36﹢12 )米;
19.(本题6分)(1)略; (2)∵P(奇数)=4∕9,P(偶数)=5∕9;
∴这个方案对双方不公平; (注:每小题3分)
20.(本题8分)(1)半径为6; (2)S阴影=6π-9 ; (注:每小题4分)
21.(本题8分)(1)略; (2)y= – x2+x; 当x=2时,BF=1;
(注:第①小题3分,第②小题关系式3分,X值2分)
22.(本题1 0分)(1)y﹦-4×2+24x (0
(3)∵24-4x≤8,∴ x≥4;又∵当x≥3时,S随x增大而减小;
∴当x﹦4时,S值﹦32(平方米);
(注:第①小题4分,第②小题3分,第③小题3分)
23.(本题10分)(1)①由⊿ADB≌⊿AFC可得;② 结论∠AFC=∠ACB+∠DAC成立;
(2)∵同理可证⊿ADB≌⊿AFC,∴∠AFC=∠ACB-∠DAC;
(3)∠AFC+∠ACB+∠DAC=180°(或∠AFC=2∠ACB -∠DAC等);
(注:第①小题4分,第②小题3分,第③小题3分)
24.(本题10分)(1)A (-1,0)、 B(3, 0);直线AC解析式为y﹦-X-1;
(2)设P点坐标(m ,-m-1),则E点坐标(m ,m2-2m-3);
∴PE= -m2+m+2 ,∴当m﹦ 时, PE值= ;
(3)F1(-3, 0)、 F2(1,0)、 F3(4+ , 0)、 F4(4- , 0);
(注:每小题4分)
初中数学试卷9
一、选择题(本题共24分,每小题3分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.下列各组数中,以它们为边长的线段能构成直角三角形的是().
A.,,B.3,4,5C.2,3,4D.1,1,
2.下列图案中,是中心对称图形的是().
3.将一元二次方程x2-6x-5=0化成(x-3)2=b的形式,则b等于().
A.4B.-4C.14D.-14
4.一次函数的图象不经过().
A.第一象限B.第二象限C.第三象限D.第四象限
5.已知四边形ABCD是平行四边形,下列结论中不正确的是().
A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形
C.当∠ABC=90º时,它是矩形D.当AC=BD时,它是正方形
6.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,
∠AOD=120º,则BC的长为().
A.B.4C.D.2
7.中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:
跳高成绩(m)1.501.551.601.651.701.75
人数132351
这些运动员跳高成绩的中位数和众数分别是().
A.1.65,1.70B.1.70,1.65C.1.70,1.70D.3,5
8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为,点B的坐标为,点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是().
A.3B.4
C.5D.6
二、填空题(本题共25分,第9~15题每小题3分,第16题4分)
9.一元二次方程的根是.
10.如果直线向上平移3个单位后得到直线AB,那么直线AB的解析式是_________.
11.如果菱形的两条对角线长分别为6和8,那么该菱形的面积为_________.
12.如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,
AC的中点,已知DF=3,则AE=.
13.若点和点都在一次函数的图象上,
则y1y2(选择“>”、“<”、“=”填空).
14.在平面直角坐标系xOy中,点A的坐标为(3,2),若将线段OA绕点O顺时针旋转90°得到线段,则点的坐标是.
15.如图,直线:与直线:相交于点P(,2),
则关于的不等式≥的解集为.
16.如图1,五边形ABCDE中,∠A=90°,AB∥DE,AE∥BC,点F,G分别是BC,AE的中点.动点P以每秒2cm的速度在五边形ABCDE的边上运动,运动路径为F→C→D→E→G,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2所示.若AB=10cm,则(1)图1中BC的长为_______cm;(2)图2中a的值为_________.
三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)
17.解一元二次方程:.
解:
18.已知:在平面直角坐标系xOy中,一次函数的图象与y轴交于点A,与x
轴的正半轴交于点B,.
(1)求点A、点B的坐标;(2)求一次函数的解析式.
解:
19.已知:如图,点A是直线l外一点,B,C两点在直线l上,,.
(1)按要求作图:(保留作图痕迹)
①以A为圆心,BC为半径作弧,再以C为圆心,AB为半径作弧,两弧交于点D;
②作出所有以A,B,C,D为顶点的四边形;
(2)比较在(1)中所作出的线段BD与AC的大小关系.
解:(1)
(2)BDAC.
20.已知:如图,ABCD中,E,F两点在对角线BD上,BE=DF.
(1)求证:AE=CF;
(2)当四边形AECF为矩形时,直接写出的值.
(1)证明:
(2)答:当四边形AECF为矩形时,=.
21.已知关于x的方程.
(1)求证:方程总有两个不相等的实数根;
(2)如果方程的一个根为,求k的值及方程的另一根.
(1)证明:
(2)解:
四、解答题(本题7分)
22.北京是水资源缺乏的城市,为落实水资源管理制度,促进市民节约水资源,北京市发
改委在对居民年用水量进行统计分析的基础上召开水价听证会后发布通知,从2014
年5月1日起北京市居民用水实行阶梯水价,将居民家庭全年用水量划分为三档,水
价分档递增,对于人口为5人(含)以下的家庭,水价标准如图1所示,图2是小明
家在未实行新水价方案时的一张水费单(注:水价由三部分组成).若执行新水价方
案后,一户3口之家应交水费为y(单位:元),年用水量为x(单位:),y与x
之间的函数图象如图3所示.
根据以上信息解答下列问题:
(1)由图2可知未调价时的水价为元/;
(2)图3中,a=,b=,
图1中,c=;
(3)当180
解:
五、解答题(本题共14分,每小题7分)
23.已知:正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,.
画出,猜想的度数并写出计算过程.
解:的度数为.
计算过程如下:
24.已知:如图,在平面直角坐标系xOy中,,,点C在x轴的正半轴上,
点D为OC的中点.
(1)求证:BD∥AC;
(2)当BD与AC的距离等于1时,求点C的坐标;
(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
解:(1)
答案
一、选择题(本题共24分,每小题3分)
题号12345678
答案BDCDDCAC
二、填空题(本题共25分,第9~15题每小题3分,第16题4分)
9..10..11.24.12.3.13.>.
14..15.≥1(阅卷说明:若填≥a只得1分)
16.(1)16;(2)17.(每空2分)
三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)
17.解:.
,,.…………………………………………………………1分
.……………………………………………2分
方程有两个不相等的实数根…………………………3分
.
所以原方程的根为,.(各1分)………………5分
18.解:(1)∵一次函数的图象与y轴的交点为A,
∴点A的坐标为.…………………………………………………1分
∴.…………………………………………………………………2分
∵,
∴.…………………………………………………………………3分
∵一次函数的图象与x轴正半轴的交点为B,
∴点B的坐标为.…………………………………………………4分
(2)将的坐标代入,得.
解得.…………………………5分
∴一次函数的解析式为.
…………………………………6分
19.解:(1)按要求作图如图1所示,四边形和
四边形分别是所求作的四边形;…………………………………4分
(2)BD≥AC.……………………………………………………………6分
阅卷说明:第(1)问正确作出一个四边形得3分;第(2)问只填BD>AC或BD=AC只得1分.
20.(1)证明:如图2.
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.……………1分
∴∠1=∠2.………………………2分
在△ABE和△CDF中,
………………………3分
∴△ABE≌△CDF.(SAS)…………………………………………4分
∴AE=CF.……………………………………………………………5分
(2)当四边形AECF为矩形时,=2.………………………………6分
21.(1)证明:∵是一元二次方程,
…………1分
,……………………………………………………2分
无论k取何实数,总有≥0,>0.………………3分
∴方程总有两个不相等的实数根.……………………………………4分
(2)解:把代入方程,有
.…………………………………………………5分
整理,得.
解得.…………………………………………………………………6分
此时方程可化为.
解此方程,得,.
∴方程的另一根为.…………………………………………………7分四、解答题(本题7分)
22.解:(1)4.……………………………………………………………………………1分
(2)a=900,b=1460,(各1分)……………………………………………3分
c=9.…………………………………………………………………………5分
(3)解法一:当180
解法二:当180
由(2)可知:,.
得解得
∴.………………………………………………7分
五、解答题(本题共14分,每小题7分)
23.解:所画如图3所示.………………………………………………………1分
的度数为.……………………………2分
解法一:如图4,连接EF,作FG⊥DE于点G.……3分
∵正方形ABCD的边长为6,
∴AB=BC=CD=AD=6,.
∵点E为BC的中点,
∴BE=EC=3.
∵点F在AB边上,,
∴AF=2,BF=4.
在Rt△ADF中,,
.
在Rt△BEF,Rt△CDE中,同理有
,
.
在Rt△DFG和Rt△EFG中,有.
设,则.………………………………4分
整理,得.
解得,即.…………………………………………5分
∴.
∴.………………………………………………………………6分
∵,
∴.………………………………………7分
解法二:如图5,延长BC到点H,使CH=AF,连接DH,EF.…………………3分
∵正方形ABCD的边长为6,
∴AB=BC=CD=AD=6,.
∴,.
在△ADF和△CDH中,
∴△ADF≌△CDH.(SAS)……………4分
∴DF=DH,①
.
∴.………………5分
∵点E为BC的中点,
∴BE=EC=3.
∵点F在AB边上,,
∴CH=AF=2,BF=4.
∴.
在Rt△BEF中,,
.
∴.②
又∵DE=DE,③
由①②③得△DEF≌△DEH.(SSS)……………………………………6分
∴.…………………………………7分
24.解:(1)∵,,
∴OA=4,OB=2,点B为线段OA的中点.……………………………1分
∵点D为OC的中点,
∴BD∥AC.………………………………………………………………2分
(2)如图6,作BF⊥AC于点F,取AB的中点G,则.
∵BD∥AC,BD与AC的距离等于1,
∴.
∵在Rt△ABF中,,AB=2,点G为AB的中点,
∴.
∴△BFG是等边三角形,.
∴.
设,则,.
∵OA=4,
∴.………………………………………3分
∵点C在x轴的正半轴上,
∴点C的坐标为.………………………………………………4分
(3)如图7,当四边形ABDE为平行四边形时,AB∥DE.
∴DE⊥OC.
∵点D为OC的中点,
∴OE=EC.
∵OE⊥AC,
∴.
∴OC=OA=4.…………………………………5分
∵点C在x轴的正半轴上,
∴点C的坐标为.…………………………………………………6分
设直线AC的解析式为(k≠0).
则解得
∴直线AC的解析式为.………………………………………7分
初中数学试卷10
一、选择题 (每题3分,共18分)
下列式子中是二次根式的是 ( )
A. √x B. √(x^2 + 1) C. √(1/x) D. √(x^2 – 1)
下列计算正确的是 ( )
A. √(25/81) = 5/9 B. √(27) = 3√3 C. √(2/3) = √2/3 D. √(16/49) = 4/7
下列各式中,与 (a + b)^2 相等的是 ( )
A. a^2 + b^2 B. a^2 + b^2 + 2ab C. a^2 + b^2 – 2ab D. a^2 – b^2
下列计算错误的是 ( )
A. (-3a)^2 = 9a^2 B. (-3a)^3 = -27a^3 C. (-a – b)^2 = a^2 + b^2 D. -3(x-1) = -3x + 3
下列各点中,在函数 y = -x + 4 的图像上的是 ( )
A. (1, -1) B. (-1, 1) C. (0, 4) D. (4, 0)
若方程组 { x + y = 3; x – y = 1 } 的解是 { x = a; y = b },则 a – b = ( )
A. -2 B. 0 C. 1 D. 4
二、填空题 (每题3分,共18分)
若 |a| = 5,则 a = _______。
若方程 x^2 – 4x + c = 0 有两个相等的实数根,则 c = _______。
若 x/y = 2/3,则 (x + y)/y = _______。
若 x < y < z,则 |x – y| + |y – z| + |z – x| = _______。
若多项式 ax^3 + bx^2 + cx + d 能被 x^2 + x – 2整除,则 a:b:c:d = _______。
若关于 x 的方程 (k – 1)x^2 + kx + 1 = 0 有实数根,则 k 的取值范围是 _______。
三、解答题 (每题7分,共49分)
解方程:x^2 – 4x – 5 = 0。
求直线 y = -3x + 4 与坐标轴围成的三角形的面积。
解不等式组:{ x < -1; x > -3; x ≥ -2 } 并求其解集。
若关于 x 的方程 (m + n)x^2 + mx + n = 0 有两个不相等的实数根,求 m 和 n 的关系。
若关于 x 的方程 (k + 5)x^2 – kx – 6 = 0 的解为零,求 k 的值。
初中数学试卷11
一、选择题(每小题3分,共36分)
1.如图,BE平分∠ABC,DE∥BC,则图中相等的角共有( )
A.3对 B.4对 C.5对 D.6对
2.如图所示,直线l1∥l2,∠1=55°,∠2=62°,则∠3为( )
A.50° B.53° C.60° D.63°
3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )
A.10° B.20° C.25° D.30°
4.(2015•河北中考)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )
A.120° B.130° C.140° D.150°
5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( )
A.30° B.45° C.60° D.75°
6.如图所示,∠AOB的两边OA、OB均为平面反光镜,且∠AOB=28°.在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB =( )
A.28° B.56° C.100° D.120°
7.如图所示,直线a,b被直线c所截,现给出下列四个条件:
①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.
其中能判断a∥b的条件的序号是( )
A.①② B.①③ C.①④ D.③④
8.如图所示,AB∥CD,直线EF与AB、CD分别相交于点G,H,∠AGH=60°,则∠EHD的度数是( )
A.30° B.60° C.120° D.150°
9.若直线a∥b,点A、B分别在直线a、b上,且AB=2 cm,则a、b之间的距离( )
A.等于2 cm B.大于2 cm
C.不大于2 cm D.不小于2 cm
10.如图所示,直线a∥b,直线c与a、b相交,∠1=60°,则∠2等于( )
A.60° B.30° C.120° D.50°
11.如图所示,把矩形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( )
A.110° B.115° C.120° D.130°
12.如图,△DEF是由△ABC平移得到,且点B、E、C、F在同一直线上,若BF=14,CE=6,则BE的长度为( )
A.2 B.4 C.5 D.3
二、填空题(每小题3分,共24分)
13.如图所示,在不等边△ABC中,已知直线DE∥BC,∠ADE=60°,则图中等于60°的角还有 .
14.一个宽度相等的纸条按如图所示方法折叠,则∠1= .
15.如图所示,已知∠1=∠2,再添加条件 可使CM∥EN.(只需写出一个即可)
16.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是 .
17.如图,标有角号的7个角中共有_______对内错角,________对同位角,_______对同
旁内角.
18.货船沿北偏西62°方向航行,后因避礁先向右拐28°,再向左拐28°,这时货船的航行方向是 .
19.如图所示,若∠1=82°,∠2=98°,∠3=77°,则∠4= .
20.如图,已知∠1=∠2,∠ =35°,则∠3=_____.
三、解答题(共40分)
21.(8分)已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.
22.(8分)如图所示,要想判断AB是否与CD平行,我们可以测量哪些角?请写出三种方案,并说明理由.
23.(8分)如图所示,已知AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,求∠EAB的度数.
24.(8分)如图所示,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB,试说明:CD平分∠ACE.
25.(8分)如图,在四边形ABCD中,AD∥BC,BC>AD,将AB,CD分别平移到EF和EG的位置,若AD=4 cm,BC=8 cm,求FG的长.
初中数学试卷12
一、选择题(本大题共8小题,每小题3分,共24分)
每题给出四个答案,其中只有一个符合题目的要求,把选出的答案编号填在下表中.
题号 1 2 3 4 5 6 7 8
答案
1.在式子 , , , , , 中,分式的个数是
A.5 B.4 C.3 D.2
2.反比例函数 的图像经过点 ,则该函数的图像在
A. 第一、三象限 B.第二、四象限 C. 第一、二象限 D. 第三、四象限
3.在下列性质中,平行四边形不一定具有的性质是
A.对边相等 B.对边平行 C. 对角互补 D.内角和为3600
4. 菱形 的两条对角线长分别为 和 ,则它的周长和面积分别为
A. B. C. D.
5.函数 的图像上有两点 , ,若 0﹤ ﹤ ,则
A. ﹤ B. ﹥ C. = D. , 的大小关系不能确定
6.在下列各组数据中,可以构成直角三角形的是
A. 0.2,0.3,0.4 B. , , C. 40,41,90 D. 5,6,7
7.样本数据是3,6,10,4,2,则这个样本的方差是
A.8 B.5 C.3 D.
8. 如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB= ,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;
④BO⊥CD,其中正确的是
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
二、填空题:(本大题共8小题,每小题3分,共24分)
9.生物学家发现一种病毒的长度约为0.00000043mm,用科学记数法表示这个数的结果
为 .
10. 若 的值为零, 则 的值是 .
11. 数据1,2,8,5,3,9,5,4,5,4的众数是_________,中位数是__________.
12. 若□ABCD的周长为100cm,两条对角线相交于点O,△AOB的周长比△BOC的周长多10cm,那么AB= cm,BC= cm.
13. 若关于 的分式方程 无解,则常数 的值为 .
14.若函数 是反比例函数,则 的值为________________.
15.已知等腰梯形的一个底角为600,它的两底边分别长10cm、16cm,则等腰梯形的周长是_____________________.
16.如图,将矩形 沿直线 折叠,顶点 恰好落在 边上 点处,已知 , ,则图中阴影部分面积为 __.
三、(本大题共3小题,每小题6分,共18分)
17.先化简 ,再取一个你认为合理的x值,代入求原式的值.
18. 如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。
(1)使三角形三边长为3, , 。
(2)使平行四边形有一锐角为45°,且面积为4。
(1) (2)
19. 北京时间2010年4月14日7时49分,青海玉树发生7.1级地震,灾情牵动着全国各族人民的心。无为县某中心校组织了捐款活动.小华对八年级(1)(2)班捐款的情况进行了统计,得到如下三条信息:
信息一:(1)班共捐款540元,(2)班共捐款480元.
信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的 .
信息三:(1)班比(2)班少3人.
请你根据以上信息,求出八(1)班平均每人捐款多少元?
四.(本大题共2小题,每小题8分,共16分)
20. 如图,在四边形ABCD中,∠B =90°,AB= ,
∠BAC =30°,CD=2,AD= ,求∠ACD的度数。
21.工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图①),使 ;
(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据数学道理是:
;
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: 。
五、(本大题共2小题,每小题9分,共18分)
22. 某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:
1号 2号 3号 4号 5号 总分
甲班 100 98 110 89 103 500
乙班 86 100 98 119 97 500
(1)根据上表提供的数据填写下表:
优秀率 中位数 方差
甲班
乙班
(2)根据以上信息,你认为应该把冠军奖状发给哪一个班级? 简述理由.
23. 如图,梯形 中, 且 , 、 分别是两底的中点,连结 ,若 ,求 的长。
六、(本大题共2小题,每小题10分,共20分)
24. 如图,一次函数 的图像与反比例函数 的图像交于 两点,与 轴交于点 ,与 轴交于点 ,已知 ,点 的坐标为 ,过点 作 轴,垂足为 。
(1)求反比例函数和一次函数的解析式;
(2)求 的面积。
(3)根据图像回答:当x 为何值时,一次函数的函数值大于
反比例函数的函数值?
25. 如图16,在直角梯形ABCD中,AD∥BC, ,AD = 6,BC = 8, ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.
设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到值,请回答:该值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
2011-2012年学年度下学期期末质量检测
八年级数学试题答案
一、选择题(每小题3分,共24分)
1-4. CBCB 5-8.ACAD
二、填空(每小题3分,共24分)
9. 10. 3 11. 5,4. 2. 12. 30,20
13. 2 14. 2 15. 38cm 16. 30cm2
17、解: = …………(1分)
= = …………………………(3分)
= ……………………………………………………………………(4分)
因为 x≠+1、-1、0。所以可以取x=2。…………………………(5分)
原式= …………………………………………………………………………(6分)
18、每小题3分,略
19、解:设八(1)班每人捐款 元,则八(2)班每人捐 元.……………………1分
则 …………………………………3分
去分母得
解得 ……………………………………4分
检验: …………………………………………………5分
答:略 …………………………………………………6分
20、解:因为∠B =90°,AB= ,∠BAC =30°
设BC= , 则AC= ………………………………(1分)
所以AC2=AB2+BC2 ………………………(3分)
所以解得x=1, 所以AC=2…………………(4分)
又因为CD=2,AD=2 ;22+22=
所以AD2=AC2+DC2…………………(6分)
所以△ACD为等腰直角三角形…………(7分)
所以∠ACD=900. …………………(8分)
21、解:(2)平行四边形,两组对边分别相等的四边形是平行四边形
(3)矩形,有一个角是直角的平行四边形是矩形 (每空2分)
22、(1)每空1分 …… …… …… …… 6分
优秀率 中位数 方差
甲班 60% 100 46.8
乙班 40% 98 114
(2)答; 应该把冠军奖状发给甲班。 …… …… …… …… …… 7分
理由:根据以上信息,甲班的优秀率和中位数都比乙班高,而方差却比乙班小,说明甲班参赛学生的整体水平比乙班好,所以应该把冠军奖状发给甲班。
…… …… …… …… …… 9分
23、解:过点 分别作 交 于 (如图)
…… …… …… …… …… 2分
即 是直角三角形。 …… 3分
, 四边形 、 都是平行四边形
…… ……5分
在 中, …… ……6分
又 、 分别是两底的中点 …… ……7分
即 是 斜边的中线 ……8分
…… ………… ………… ………… …… ……9分
(2)
= …(8分)
(3)
…… ………… …… …… …… …… …… …… …… ……(10分)
25、解:(1) …… …… …… ………… …… …… …… (2分)
(2)当BP = 1时,有两种情形:
①如图,若点P从点M向点B运动,有 MB = = 4,MP = MQ = 3,
∴PQ = 6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴ .
∵AB = ,∴点E在AD上.
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面积为 . …… …… …… (5分)
②若点P从点B向点M运动,由题意得 .
PQ = BM + MQ BP = 8,PC = 7.设PE与AD交于点F,QE与AD或AD的延长线交于点G,过点P作PH⊥AD于点H,
则HP = ,AH = 1.在Rt△HPF中,∠HPF = 30°,
∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2,
∴点G与点D重合,如图.此时△EPQ与梯形ABCD
的重叠部分就是梯形FPCG,其面积为 .…… …… (8分)
(3)能. …… …… …… …… (10分)
本文由用户 shaojun 上传分享,若有侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:https://www.dzlps.cn/doc/w1147.html